本篇文章给大家谈谈一元二次不等式的解法,以及一元二次不等式的公式对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
解一元二次不等式步骤一般有四个:
1、把二次项系数变成正的;
2、画数轴,在数轴上从小到大依次标出所有根;
3、从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含x的项是奇次幂就穿过,偶次幂就跨过);
4、注意看看题中不等号有没有等号,没有的话还要注意舍去使不等式为0的根。
扩展资料
数轴穿根法适用于所有的不等式。
用根穿孔法求解高阶不等式时,先将不等式的一端化为零,然后在另一端分解,得到其零点。这些零点标记在数字轴上,然后芦余使用平滑曲线从X轴右端的顶部穿过这些零点。
大于零的不等式解陪配滚对应于x轴上曲线上部实数x的一组小于零的值。相卖森反地。这种方法被称为序贯轴根部穿孔法,也被称为“根部穿孔法”。口诀是“从右到左,从上到下,奇穿偶不穿。”
参考资料来源:百度百科-一元二次不等式
解一元二次不等式的步骤衫历:
1、对不等式变形,使一端为0且二次项系数大于0,即ax2+bx+c>0(a>0),ax2+bx+c<0(a>0)。
2、计算相应的判别式。
3、当Δ≥0时,求出相应的一元二次方肢帆程的根。
4、根据对应二次函数的图象,写出不等式的解集。
解一元二次不等式应注意的问题:
1、在解一元二次不等式时,要先把二次项或饥搜系数化为正数。
2、二次项系数中含有参数时,参数的符号会影响不等式的解集,讨论时不要忘记二次项系数为零的情况。
3、解决一元二次不等式恒成立问题要注意二次项系数的符号。
4、一元二次不等式的解集的端点与相应的一元二次方程的根及相应的二次函数图象与x轴交点的横坐标相同。
解一元二次不等式的步骤:
以数轴穿根法为例,解一元二次不等式的步骤如下:1、将二次项系数变成正的;2、画数轴,在数轴上从小到大依次标出所有根;3、从右上角开始,一上一下依次穿过不等式的根,遇到含x的项是奇次幂就穿过,偶次幂就跨过;4、注意舍去使不等式为0的根。
一元二次不等式定义
一元二次不等式,是指含有一个未知数且未知数的最高次数为2的不碧猜等式叫做一元二次不等式。它的一般形式是 ax²+bx+c0 、ax²+bx+c≠0、ax²+bx+c0(a不等于0)。
拓展阅读:一元二次不等式的判别方法
(1)当a0时
判别式△=b²-4ac0时,ax²+bx+c=0两个不相等的实数根(设x10的解是xx2。
判别式△=b²-4ac=0时,因为a0,二次函数图像的开口向上,抛物线与x轴有一个交点,x1=x2,所以不等式ax²+bx+c0的解是x≠x1的全体实数,而不等式ax²+bx+c0的解集是空集。
判别式△=b²-4ac0时,慧慧知抛物线在x轴的上方与x轴没有交点,所以不等式ax²+bx+c0的解集是前消全体实数,而不等式ax²+bx+c0的解集是空集,即无解。
(2)当a0时
判别式△=b²-4ac0时,ax²+bx+c=0两个不相等的实数根(设x10的解是x1
判别式△=b²-4ac=0时,因为a0,二次函数图像的开口向下,抛物线与x轴有一个交点,x1=x2,所以不等式ax²+bx+c0的解是x≠x1的全体实数,而不等式ax²+bx+c0的解集是空集。
判别式△=b²-4ac0时,抛物线在x轴的上方与x轴没有交点,所以不等式ax²+bx+c0的解集是全体实数,而不等式ax²+bx+c0的解集是空集,即无解。
首先化成一般式,构造函数第二站;判别式值若非负,曲线横轴有交点;a正开口它向上,大于零雀姿则取两边;代数式若小于零,解集交点数之间;方程若无实数根,口上大零解为全;小于零将没有解,开口向下正相反。
一元二次不等式求解方法:
判别式△=b²-4ac>0时,一元二次方程ax²+bx+c=0两个不相等的实数根。
判别式△=b²-4ac=0时,一元二次方程ax²+bx+c=0两个相等的实数根。
判别式△=b²-4ac<0时,仿返一元二次方程ax²+bx+c=0无实根。
相关内容解释:
一元二次方程)是指含有一个未知数且未知数的最高次项是二次的整式方程。 一般形式为ax^2+bx+c=0, (a≠0)。在公元前两千年左右,一元二次方程及其解法已出现于古巴比伦人的泥板文书中:已知一个数与它的倒数之和等于一个已给数,求出这个数,使 x1+ x2 =b,x1·x2=1,x2-bx+1=0。
他们再做出解答 。可见巴比伦人已知道一元二次方程的求根公式。但他们当时并不接受 负数,所以负根是略而不提的。
埃及的纸草文书中也顷大绝涉及到最简单的二次方程,例如:ax^2=b。
在公元前4、5世纪时,我国已掌握了一元二次方程的求根公式。
解析如下:
x^2+2x-3≤0
(x+3)(x-1)≤0
x+3≤0且x-1≥0
x≤ -3且x≥1,无解
或
x+3≥0且x-1≤0
x≥-3且x≤1
所以不等式解集是:-3≤x≤1
二元一次方程一般解法:
消元:将方程组中的未知数个数由多化少,逐一解决物颤卖。
消罩逗元的方法有两种:
1、代入消元
例:解方程组x+y=5① 6x+13y=89②
解:由①得x=5-y③洞猜 把③带入②,得6(5-y)+13y=89,解得y=59/7
把y=59/7带入③,得x=5-59/7,即x=-24/7
∴x=-24/7,y=59/7
这种解法就是代入消元法。
2、加减消元
例:解方程组x+y=9① x-y=5②
解:①+②,得2x=14,即x=7
把x=7带入①,得7+y=9,解得y=2
∴x=7,y=2
这种解法就是加减消元法。
一元二次不等式的解法
解法一
当△=b²-4ac≥0时,
二次三项式,ax²+bx+c 有两个实根,那么 ax²+bx+c 总可分解为a(x-x1)(x-x2)的形式。
这样,解一元二次不等式就可归结为解两个一元一次不等式组。一元二次不等式的解集就是这两个一元一次不等式组的解集的交集。
举例:
试解一元二次不等式 2x²-7x+60
解:
利用十字相乘法
2x -3
x -2
得(2x-3)(x-2)0
然后,分两种情况讨论
:口诀:大于取两边,小于取中间
1) 2x-30,x-20
得x1.5且x2。不成立
2)2x-30,x-20
得x1.5且x2。
得最后不等式的解集为:1.5x2。
完毕。
解法二
另外,你也腔歼尘可以用配方法解二次不等式。
如上例题:
2x²-7x+6
=2(x²-3.5x)+6
=2(x²-3.5x+3.0625-3.0625)+6
=2(x²-3.5x+3.0625)-6.125+6
=2(x-1.75)²-0.1250
2(x-1.75)²0.125
(x-1.75)²0.0625
两边开平方,得
x-1.750.25 且 x-1.75-0.25
x2且x1.5
得不等式的解集为1.5x2
解法三
一元二次不等式也可通过一元二次函数图象进行求解。
通过看图象可知,二次函数图象与X轴的两个交点,然后根据题目所需求的"0"或"0"而推出答案。
求一元二次不等式的解集实际上是将这个一元二次不等式的所有项移到不等式一侧并进行因式分解分类讨论求出解集。解一元二次不等式,可将一元二次方程不等式转化成二次函数的形式,求出函数与X轴的交点,将一元二次不等式,二次函数,一元二次方程联系起来,并利用图像法进行解题,使得问题简化。
解法四
数轴穿根:用根轴法解高次不等式时,就是先把不等式一端化为零,再对另一端分解因式,并求出它的零点,把这些零点标在数轴上,再用一条光滑的曲线,从x轴的右端上方起,依次穿过这些零点,这大于零的不等式伍禅的解对应这曲线在x轴上方部分的实数x得起值集合,小于零的这相反。这种方法叫做序轴标根法。口诀是“从右到左,从上到下,奇穿偶不穿。”
●做法::
1.把二次项系数变成正的(不用是1,但是得是正的);
2.画数轴,在数轴上从小到大改枝依次标出所有根;
3.从右上角开始,一上一下依次穿过不等式的根,奇过偶不过(即遇到含X的项是奇次幂就穿过,偶次幂跨过,后面有详细介绍);
4.注意看看题中不等号有没有等号,没有的话还要注意写结果时舍去使不等式为0的根。
●例如不等式: x²-3x+2≤0(最高次项系数一定要为正,不为正要化成正的)
⒈分解因式:(x-1)(x-2)≤0;
⒉找方程(x-1)(x-2)=0的根:x=1或x=2;
⒊画数轴,并把根所在的点标上去;
⒋注意了,这时候从最右边开始,从2的右上方引出一条曲线,经过点2,继续向左画,类似于抛物线,再经过点1,向点1的左上方无限延伸;
⒌看题求解,题中要求求≤0的解,那么只需要在数轴上看看哪一段在数轴及数轴以下即可,观察可以得到:1≤x≤2。
●高次不等式也一样.比方说一个分解因式之后的不等式:
x(x+2)(x-1)(x-3)0
一样先找方程x(x+2)(x-1)(x-3)=0的根
x=0,x=1,x=-2,x=3
在数轴上依次标出这些点.还是从最右边的一点3的右上方引出一条曲线,经过点3,在1、3之间类似于一个开口向上的抛物线,经过点1;继续向点1的左上方延伸,这条曲线在点0、1之间类似于一条开口向下的曲线,经过点0;继续向0的左下方延伸,在0、-2之间类似于一条开口向上的抛物线,经过点-2;继续向点-2的左上方无限延伸。
方程中要求的是0,
只需要观察曲线在数轴上方的部分所取的x的范围就行了。
x-2或0x1或x3。
●⑴遇到根是分数或无理数和遇到整数时的处理方法是一样的,都是在数轴上把这个根的位置标出来;
⑵“奇过偶不过”中的“奇、偶”指的是分解因式后,某个因数的指数是奇数或者偶数;
比如对于不等式(X-2)²·(X-3)0
(X-2)的指数是2,是偶数,所以在数轴上画曲线时就不穿过2这个点,
而(X-3)的指数是1,是奇数,所以在数轴上画曲线时就要穿过3这个点。
(3)分子中一定都是能够因式分解成一次式的因式,否则不能用此方法。
2判别方法
以上新高三网整理的关于一元二次不等式的解法和一元二次不等式的公式的介绍到此,你是否找到了所需要的信息?如果你还想了解更多这方面的信息,记得收藏我们的栏目。